The Air Force Wants Next-Generation Hypersonic Weapons by 2040
Can they pull it off?
Key point: Washington wants hypersonic missiles ready for us in combat as soon as possible.
(Washington D.C.) - The Air Force Research Laboratory is immersed in early work on a new-generation of hypersonic weapons designed to come after the currently emerging arsenal, expanding hypersonic mission options in new directions and introducing new air vehicle configurations.
The Pentagon and military services have been massively fast-tracking hypersonic weapons development, given the far-reaching warfare implications associated with firing weapons able to travel at five-times the speed of sound; numerous programs have been underway, and the most current estimation is that an initial set of hypersonic weapons will be operational by the early 2020s. Earlier this year, the Air Force conducted its first prototype hypersonic missile flight test; the service launched a sensor-only prototype of the AGM-183A Air Launched Rapid Response Weapon from a B-52.
The advantages of these weapons are both self-evident and multi-faceted; they include much greater stand-off ranges for attack as well as a vastly increased ability to defeat, circumvent or even destroy enemy defenses. Hypersonic attack naturally reduces any kind of response time afforded to an enemy, possibly hitting or disabling a target before an enemy has a chance to respond.
The Pentagon and military services are already having some success with accelerated hypersonic weapons testing and development, yet there is still much work to be done when it comes to refining the technology needed for current and future hypersonic weapons flight. Engineering weapons to move at five times the speed of sound relies upon an ability to manage, and in effect minimize, the heat of the weapons. Excessive heat at that speed can not only incinerate the weapon such that it cannot fly but can also disrupt or derail its flight trajectory.
Therefore, the fundamental challenge with hypersonic flight resides in this need to manage the extreme temperatures reached at those speeds, factors which can prevent, complicate or disable successful hypersonic flight. An area of focus within this sphere of inquiry, AFRL developers tell warrior, relates to several complex aerodynamic challenges, such as managing the air flow surrounding the vehicle in flight. Referred to by scientists as a “boundary layer,” the air flow characteristics of a hypersonic weapon’s flight trajectory greatly impact the stability of the system - much of which relates to temperature.
“We are working on boundary layer phenomenology to better understand heat flux on hypersonic weapons. This will allow us to do optimization on thermal management,” Tim Sakulich, Air Force Research Lab, Director of Materials and Manufacturing and Lead on Implementing the Air Force S&T Strategy, told Warrior in an interview. “We are designing these systems to provide the speed, reach and lethality we are looking for.”
The Pentagon and military services are already having some success with accelerated hypersonic weapons testing and development, yet there is still much work to be done when it comes to refining the technology needed for current and future hypersonic weapons flight. Engineering weapons to move at five times the speed of sound relies upon an ability to manage, and in effect minimize, the heat of the weapons. Excessive heat at that speed can not only incinerate the weapon such that it cannot fly but can also disrupt or derail its flight trajectory.
Therefore, the fundamental challenge with hypersonic flight resides in this need to manage the extreme temperatures reached at those speeds, factors which can prevent, complicate or disable successful hypersonic flight. An area of focus within this sphere of inquiry, AFRL developers tell warrior, relates to several complex aerodynamic challenges, such as managing the air flow surrounding the vehicle in flight. Referred to by scientists as a “boundary layer,” the air flow characteristics of a hypersonic weapon’s flight trajectory greatly impact the stability of the system - much of which relates to temperature.
“We are working on boundary layer phenomenology to better understand heat flux on hypersonic weapons. This will allow us to do optimization on thermal management,” Tim Sakulich, Air Force Research Lab, Director of Materials and Manufacturing and Lead on Implementing the Air Force S&T Strategy, told Warrior in an interview. “We are designing these systems to provide the speed, reach and lethality we are looking for.”
“In regards to a next-generation hypersonic vehicle, the design goal would be to maintain a laminar boundary layer for as long as possible in order to minimize heating. Small perturbations to the boundary layer can excite various instability modes ,” the essay states. (NASA Langley Research Center, Air Force Research Laboratory, Case Western Reserve University… Scott Berry, Roger Kimmel, Eli Reshotko)
Increased heat can bring challenges; it strengthens the weapon's thermal signature, making it easier for sensors to track. Heat challenges can also introduce difficulties by creating a need to engineer a weapon able to withstand the heat levels and remain intact during high speed flight. For this reason, hypersonic weapons -- and ICBMs as well -- are constructed with specially engineered heat-resistant materials. Sakulich emphasized that current AFRL work is, along these lines, focused on finding newer composite materials.
Improving hypersonic propulsion will not only improve the effectiveness and resiliency of existing weapons but also enable different form factors such as larger, longer or differently shaped attack weapons. The NASA-AFRL-Case Western essay, for instance, introduces the additional technical complexity that might be needed to advance hypersonic flight stability for “re-entry” bodies, such as those used on a nuclear-armed missile.
“Generally, the application of this knowledge (boundary layer management) has been restricted to simple shapes like plates, cones and spherical bodies. However, flight reentry vehicles are in reality never simple,” the NASA, AFRL essay states.
For example, rougher surface material or weapons vehicle’s with less linear configurations present additional complicating variables believed to impact the stability of hypersonic flight. Engineering scientific methods for increasing the laminar boundary layer properties of hypersonic vehicles, it seems apparent, could help lay a foundation for newer, next-generation hypersonic configurations, such as differently shaped drones or weapons with various warheads.
An interesting RAND essay, called “Hindering the Spread of a New Class of Weapons,” explains that heat signatures are impacted by the shape, size, velocity and trajectory of a weapon.
“The larger the nose radius, the smaller the heat transfer on the nose of the vehicle. Trajectory shaping, i.e., velocity and altitude, can also be used to manage the total heat transfer on an RV (Re-entry Vehicle) while meeting other input requirements and constraints, e.g.,range, maximum deceleration, and time of flight. Hypersonic weapons have different constraints and requirements compared with reentry bodies. HGVs(Hypersonic Glide Vehicles) and HCMs(Hypersonic Cruise Missiles) will tend to have sharp leading edges, i.e.,a small nose radius, which will increase the heat transfer,” the essay states. (RAND - Speier, Nacouzi, Lee)
Also, most hypersonic weapons need to travel for long periods of time at high speeds, when compared to a re-entry body travelling at hypersonic speed.. therefore…”two of the major parameters in the total heat equation, velocity and time, cannot generally be reduced,” the RAND paper states.
The overall hypersonic weapons evolution, you could call it, is entirely consistent with the Air Force’s long-term hypersonic strategy, which does call for a “stair-step” strategic approach to hypersonics. First, as expected, is hypersonic weapons, an effort which is now on track to emerge in just the next few years. Secondly, a former Air Force Chief Scientist(Dr. Gregory Zacharias) told Warrior in an interview several years ago, the service hopes to engineer hypersonic “drones” for ISR or attack, to be followed by “recoverable drones” over the next several decades. These developments, however, may require many more years of research and technical progress to come to fruition, providing some of the inspiration for some of the current boundary layer scientific work described by Sakulich.
Many Hypersonic weapons are engineered as “kinetic energy” strike weapons, meaning they will not use explosives but rather rely upon sheer speed and the force of impact to destroy targets, developers explain. A super high-speed drone or ISR platform would better enable air vehicles to rapidly enter and exit enemy territory and send back relevant imagery without being detected by enemy radar or shot down.
Interestingly, air flow properties of hypersonic weapons can also provide a window through which to attack or destroy an enemy hypersonic weapon; hypersonic flight is not only complex but also extremely fragile, Ret. Lt. Gen. Trey Obering, Executive Vice President and Directed Energy Lead, Booz Allen Hamilton, told Warrior in an interview. (Obering previously served as the Director of the Pentagon’s Missile Defense Agency)
Therefore, hypersonic weapons could also potentially be stopped by, as Obering put it, causing a “disruption in the air flow.” Changes in aerodynamics can break up forces such as lift, thrust and drag, Obering said.
“These forces are all in balance. When you are going fast there is a small margin in those forces. A disruption can cause the entire vehicle to break up,” he explained.
Essentially, the idea is not to destroy the hypersonic weapon with an explosion, but rather cause an “instantaneous” angle change in the complex, interwoven mixture of air-flow variables. This, quite significantly, can cause an entire vehicle to break apart. A number of things could cause this, such as a laser, rupture of a booster, missile explosion in the vicinity of the weapon in-flight or some other kind of disruption.
“Hypersonics have control surfaces that can maneuver like an aircraft. You would take advantage of the vehicle’s speed and cause a change in vehicle direction,” Obering said.