Here's My Step by Step Plan to Beat China in a War
It won't be easy, but it is possible.
While we don’t think of the PRC as an island nation, effectively it is one. Over 98 percent of the PRC’s external commerce by tonnage moved is seaborne. The transportation infrastructure over land borders accounts for a miniscule portion of PRC imports, and all goods crossing the borders are a long way from China’s industrial sector. The total volume of goods moved overland via train, road and watercraft through the borders in a year is exceeded by the port of Shanghai in 60 days, with room to spare.
This reality is effectively impossible to change or mitigate in any significant way, and clearly indicates the potential of an SI campaign focused on maritime transport.
Energy — the sixth ring
The targeting strategy for the Gulf War’s air power application was based on Col. John Warden’s “five rings,” which threatened the subject country (in this case, Iraq) as a series of concentric rings. The outermost ring (fielded forces) protected the inner rings (population, infrastructure, organic essentials and leadership). As the theory went, one of the key advantages of air power was that aircraft could fly over the outermost rings to get to the key one — leadership.
While applicable to Iraq in 1990, the applicability to China is questionable, as it is not a centralized Ba’ath Party dictatorship led by a single individual. Furthermore, it is risky to attempt to execute a decapitation strategy against a state with a significant nuclear arsenal. Instead, an SI strategy is centered on the sixth ring, which doesn’t exist at all in Warden’s construct except as part of the second and third rings.
The Sixth Ring is the energy ring, which also serves as the glue that holds all of the rings together. In this modified construct, the center ring is still a physical target, but under an SI strategy, it is not one that is attacked directly. Effects aimed at it, along with every other ring, are secondary effects of an energy denial strategy.
China is a massive energy consumer, relying primarily on coal for electricity and oil for transportation. The two are not really interchangeable, and each has its own vulnerabilities. Coal-fired power plants provide approximately 70 percent of China’s electricity generation, a percentage that has remained relatively constant since 1980. Nuclear, natural gas, solar and hydropower are a comparatively small portion of the power generation infrastructure, providing less energy combined than oil does alone. As these last four are comparatively minor energy sources, they are ignored in this analysis.
Coal
China is the world’s largest coal consumer. Steam coal is used for power, and coking coal for industrial processes. Coal consumption is largely taken up by industry, including power generation. Even without counting heating demand, the power sector consumes more steam coal than industry.
China produces most of its coal domestically, producing 3.87 billion tonnes of coal in 2014 and importing another 291 million tonnes in 2014, a domestic/import ratio of better than 13:1. In the past two years, Mongolia has emerged as a key supplier of imported coal, supplying by train and truck rather than by ship.
In 2012, China had 58 coal offload ports, scattered all along the coast, serving both domestic and international coal movement.
While imported coal appears to be a drop in the bucket compared to the total coal supply, this is not true for all regions. Seventy percent of imported steam coal was consumed by power plants in coastal regions south of the Yangtze (Guangdong, Shanghai, Guangxi, Zhe-jiang and Jiangsu) — the demand centers furthest from China’s main coal-producing regions. This may not be related to the capacity of the transport system but its cost — for the southeastern provinces it is cheaper to import coal than to ship it domestically.
Oil
Crude oil accounted for roughly 19 percent of China’s electricity consumption in 2012, making it a distant second to coal. Oil supplies are mostly gobbled up in transportation, although diesel is also the fuel of choice for backup power generation. China’s appetite for crude is massive, requiring imports of 2.26 billion barrels and another 219 million barrels of refined fuels on top of domestic oil production of 1.53 billion barrels in 2014. In total, in 2014 China imported 56 percent of its oil needs.
The lion’s share of petroleum consumption is taken up by industry, including electricity production, chemical manufacture and refining. The transportation sector in China consumes almost as much petroleum as industry, consuming the vast majority of middle and light distillates burned in a year. Transport accounts for 46 percent of the gasoline consumed, 91 percent of the kerosene and 63 percent of the diesel fuel.
Oddly enough, as much as two thirds of China’s annual diesel fuel consumption is burned transporting coal. By comparison, the entire transportation sector consumes less than two percent of the electricity used in a year.
China is making an effort to establish a strategic petroleum reserve (SPR) for crude oil. In 2010, China had a commercial storage capacity of between 170 and 310 million barrels, but no national strategic reserve at all. The PRC’s tenth five-year plan (2000 to 2005) marked the beginning of the government SPR program. Phase 1 established a capacity of 103 million barrels at four sites and was filled by 2009; phase 2 is expanding that to by another 226 million barrels at nine locations, of which 210 million barrels will be filled by the end of 2015. The last phase, (2020), should bring the SPR capacity to half a billion barrels of crude oil.
Even at this capacity, the SPR holds less oil than the PRC imports in three months. The SPR holds no refined products, which are entirely reliant on a commercial storage capacity estimated at 400 to 480 million barrels for all types of refined fuel combined. With one notable exception using a reclaimed salt mine, the SPR sites are conventional above-ground storage tanks, often on the coast, and often next to existing refineries.
Internal transportation network
China has a well-developed transportation network all along the eastern corridor, consisting of waterways, roads and railways. Compared to the United States, China’s water transport enterprise is massive while the pipeline transport infrastructure is minuscule. As of 2013, the Chinese rail network consisted of 90,000 kilometers of conventional railway lines and another 10,000 kilometers of high-speed lines, which are mostly passenger lines. Of this, 56,000 kilometers was electric and 48,000 kilometers double-tracked.
The country has 125,000 kilometers of navigable inland waterways, including the Yangtze River, which moves more freight by far than any other inland waterway in the world. The public road network consists of 4.36 million kilometers of roads, 34 percent of which are dirt with 424,000 kilometers of highways including 9,600 kilometers of expressway. In 2012, the country reported having 9,100 kilometers of oil and gas pipelines, roughly 0.3 percent of the U.S. pipeline infrastructure.
The transportation network is substantially less dense away from the eastern provinces, and is comparatively sparse at the country’s borders or in the west. With respect to the tonnage of freight moved (which includes fossil fuels), China uses highways, waterways and rail, in that order, to move goods internally.
Air transport is virtually insignificant by comparison, while pipeline transport for oil, refined products and gas is comparatively limited. Measured by tonne-kilometers rather than simply tonnage, waterways and highways switch places, because waterways are used to ship goods longer distances by far. In 2012, the average tonne of freight moved 1781 kilometers by waterway, 748 kilometers by road and a mere 187 by road.
Many trips mix modes of surface transportation. The implication of this transport distribution is that China’s internal transport is reliant on the two modes that are most oil-intensive. In 2014 total freight traffic increased by over seven percent compared to 2013, with roads and waterways gaining traffic (10 and 16 percent increases, respectively) and rail losing it (5.6 percent decrease).
It takes energy to move energy. Coal accounts for a full 52 percent of the tonnage shipped and 40 percent of the tonne-kilometers hauled by rail and 21 percent of the domestic freight handled in the large coastal and river ports. Petroleum products account for only four percent of the rail tonnage and nine percent of the port freight. On average, a tonne of coal moved by rail travels 647 kilometers.
Moving coal is nontrivial in China. The three top coal-producing provinces are Shanxi, Shaanxi and Inner Mongolia (outlined in black), which alone account for more than half of the national coal output. These three provinces are some distance from the coal-consuming provinces.
The railway network was unable to keep up with the transport demand as China’s coal usage increased, and as a result from 1997 much coal traffic was diverted to multimode transport, where coal is carried by rail to the ports on the Bohai Sea and thence by coastal shipping to the south. Truck transport is used extensively, resulting in world-class traffic jams. In 2010, Inner Mongolia coal traffic generated several major traffic jams, extending for more than 100 kilometers and lasting for days.