Five Ways to Defend Aircraft Carriers From Modern Missiles and More

Five Ways to Defend Aircraft Carriers From Modern Missiles and More

Aircraft carriers have always been vulnerable to enemy attacks. Here's how to make sure carriers continue to rule the seas for years to come.

 

Here's What You Need to Know: The true power of aircraft carriers comes from their ability to provide a secure, mobile airbase for a powerful air wing. Given the expected lifespan of the new carriers entering service with the USN (50 years or more), we can have no doubt that the ships will radically increase in lethality over the next decades.

HMS Furious, the first real aircraft carrier, entered service in early 1918. A converted cruiser, she displaced about 20,000 tons, and flew about half a dozen Sopwith Camels, an aircraft with a range of about 150 miles and a weapons payload just short of 100 pounds. Twenty-five years later, Furious could carry 36 aircraft, ranging at least twice as far with weapon loads of around 2,000 pounds. Her larger, purpose-built cousins could carry double the number of aircraft. Armored flight decks, improved anti-aircraft armament, and better damage control procedures protected many of these later carriers from attacks that would sink their older brethren.

 

In short, aircraft carriers are composite systems of warfare that can increase rapidly in lethality as their components improve. While the USN (and the other carrier fleets of the world) will likely never achieve the leaps forward in lethality that the inter-war navies experienced, it can still expect that its carrier fleet will grow in effectiveness over time. The USN can increase the effectiveness of its carriers in one of three ways: increase their offensive striking power, tighten their defense, or (perhaps most difficult) bring their procurement costs into line. In this context, here are five developments that could increase the lethality of the USN’s aircraft carrier fleet:

Integrated missile defense

The greatest present threat to the aircraft carrier appears to lie in the combination of cruise and precision ballistic missiles. Individually, either of these can give a carrier a very bad day, resulting in mission-killing damage to the flight deck, or worse. In combination, they present a lethal problem for fleet air defense to manage, especially when the cruise missiles approach from multiple vectors.

Air defense isn’t a new problem for aircraft carriers; many World War II carriers were lost to air attack, and the Soviets planned to destroy the USN’s carriers with huge flights of missile-carrying Backfire bombers. The combination of ballistic and cruise missiles presents a new tactical picture, one that the USN has concentrated on ameliorating over the last decade by improving its ballistic missile defenses. Most recently, the United States has reopened the possibility of “multi-object kill vehicles,” interceptors which can destroy multiple incoming targets and decoys. The ability of carrier escorts to prevent damage to their charge unquestionably makes carriers more dangerous to prospective opponents.

Laser

The power generation capabilities of the Gerald Ford (CVN-78)-class vastly exceed those of the previous Nimitz-class carriers. In the short term, this may not mean much, although it will certainly make some tasks easier (including EMALS, the new electromagnetic launch system). In the longer term, this extra power generation capacity may make lasers an effective tool for air defense.

The U.S. Navy has devoted a great deal of attention to the prospect of making directed energy weapons a useful defense system. In theory, lasers could resolve many of the problems associated with ballistic and cruise missile defense, including the accuracy and limited number of interceptors. A carrier with sufficiently powerful laser defenses could curtail the threat of even large salvos of cruise and ballistic missiles, providing a carrier group with an extra degree of security and lethality in contested areas.

Drones

With the post-Cold War cancellation of the A-12 Avenger, and the retirement of the A-6 Intruder, the USN’s carrier force has lacked a long-range strike option. The Navy has replaced this capability with the Tomahawk missile, a system that poses considerably less risk to its operators than a manned aircraft. The USN has also focused on inflight refueling as a way of extending the range of its fighter-bombers, although this practice has strained the airframes of many of the Navy’s planes.

 

At the moment, probably the biggest debate in the Navy involves the UCLASS program, an effort to supply the Navy with a long-range stealth drone. Much of the debate turns on what exactly the drone will be able to do; advocates want a long-range strike aircraft, while the more cautious want a drone that can focus on ISR. The development of either would increase the lethality of the USN’s carrier force, but a long-range strike drone, while expensive, would represent a welcome addition to the air wing.

Gens 5-6 airwing

Fundamentally, the strength of a carrier depends most on the capabilities of its air wing. In the next decade, the aircraft launched from U.S. carriers will undergo considerable change. Most notably, the arrival of the F-35C (whatever the larger problems with the program) will increase the stealth, sensor capacity, and communications capabilities of the air wing. In combination with the EA-18 Growler, this will increase the lethality of the entire air wing.

Down the road, the Navy’s pursuit of a sixth-generation fighter will hopefully keep the carrier air wing vital and effective, even against strongly defended targets. The aircraft that the Gerald Ford enters service carrying will look little like those that it flies when it leaves service.

Cost management

The biggest threat to the future of the aircraft carrier lies not in missiles or torpedoes, but in the enormous combined cost of the ships, their escorts, and their air wings. This is a problem that has not improved over the past century; carriers have grown ever more expensive, increasing the strain on defense budgets and national governments.

The Ford class and the F-35C have not been exceptions to this trend, as both have exceeded cost expectations. In the future, the Navy hopes to rein in costs by focusing on finding construction efficiencies, and using “concurrency” to accelerate the development and operationalization of new technologies. Thus far the results haven’t been great. In the future, the exorbitant cost of the ships and their aircraft may force the Navy to choose between smaller carriers, or fewer carriers.

Wrap

Aircraft carriers are just big ships with flat decks. Their true power comes from their ability to provide a secure, mobile airbase for a powerful air wing. Given the expected lifespan of the new carriers entering service with the USN (50 years or more), we can have no doubt that the ships will radically increase in lethality over the next decades.

Robert Farley is a senior lecturer at the Patterson School of Diplomacy and International Commerce. His work includes military doctrine, national security, and maritime affairs. He blogs at Lawyers, Guns and Money,Information Dissemination and The Diplomat. Follow him on Twitter:@drfarls.

This article first appeared in August 2015 and is being republished due to reader interest.

Image: Reuters.