SAVED: How Drones Could Protect U.S. Navy Ships from Mines
The future is here.
The MNS ROV conducts the “dull, dirty and dangerous” work previously conducted by classes of U.S. Navy ships by providing real-time HD video validation of mine-like objects. The MNS ROV autonomously executes the MLO route for final classification and man-on-the-loop validation of each MLO while the T38 shadows and supports it as an over the horizon communications link and countermine charge supply link. The classification, validation and engagement processes are then repeated until the field is cleared. The countermine charge detonation sequencing may be altered to detonate in any order and at any time desired to achieve mission success.
If this technical and operational solution sounds simple and achievable it is just that—a capability that exists today in its commercial subsystems that can be delivered to the U.S. Navy far more rapidly than anything the traditional acquisition system can provide. Navy officials have been provided with the details of this solution in a series of white papers and briefings and initial reactions have been positive. But that is not enough—not by a long shot.
While the individual components of this mine countermeasures solution have been extensively field tested with, collectively, thousands of hours of in-water use, the full-package of components has not yet been brought together in an exercise, experiments, and demonstrations such as those listed above so that Fleet operators can truly experience what this system-of-systems solution can provide. This milestone is slated for limited demonstration in Trident Warrior 2020.
Moving Forward with Effective—and Timely—Mine Countermeasures
During our decades of collective service in the operational Navy, we deployed to the Arabian Gulf a total of seven times—the same body of water where our shipmates on USS Samuel B. Roberts, USS Tripoli, and USS Princeton were seriously injured by mines. Because ships and sailors operate daily in harm’s way, we need to embrace an unmanned solution to dealing with deadly mines. We have the components for such a system, and it can reach fruition in the near-term.
If the U.S. Navy wants to buy-down inherent technical risk and challenge the paradigm of long-cycle FAR acquisition in the deadly serious business of MCM, then it is time to put a near-term solution in the water. While complex programs of record continue to develop next-generation technology, we should invest in parallel-path solutions that leverage mature subsystems ready to “Speed to Fleet” today. Once the Fleet sees the COTS solution that can be delivered with the system described above, we will be well on our way to providing the Navy with a way to defeat today’s mine threat.
LCDR U.H. (Jack) Rowley (USN – Retired) is a career Surface Warfare and Engineering Duty Officer whose 22 years of active duty included nine years enlisted service before commissioning. As a career destroyer sailor, he has served both in the Western Pacific as well as in the Mediterranean and Caribbean. Since his retirement, he has had extensive experience with the Oil and Gas Workboat community, and was the SAIC Lead Engineer on the early stages of the development of the DARPA Sea Hunter USV Trimaran. He is now the Chief Technology Officer for Maritime Tactical Systems, Inc (MARTAC).
SOCS Craig Cates (USN – Retired) is the Special Operations Team Lead for Teledyne Brown Engineering, Maritime Systems, a position he has held since transition from active duty in 2016. He served 27 years as a Sea Air Land (SEAL) Special Warfare Operator, including 14 years of Combat Development and Evaluation and Department of Defense Acquisition experience. His notable posts were: Seal Delivery Vehicle Pilot and Navigator, and Science and Technology Analyst. He continues to serve as an SDV OEM Test Pilot, and Diving Supervisor qualified in all SCUBA, semi-closed, and closed-circuit diving.
This originally appeared on CIMSEC in 2019.
Image: DVIDShub.